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Abstract. The Kerr effect relaxation resulting from the sudden removal of a DC field previously
applied to a system of dilute rigid linear polar rotators in a sea of non-interacting bath harmonic
oscillators is presented. In the quantum mechanical model proposed, we take account of
permanent and induced dipole effects while the inertial effect of the bath is described by a
collision operator. Hyperpolarizabilities are neglected. We use a generalized master equation
governing the evolution of the rotator probability density operator to calculate the Kerr relaxation
function8(t). In the search for this function, we define matrix elementsϕl,l (t) andϕl,l+2(t)

whose knowledge at all timest , completely gives8(t). We recover the classical limits of the
quantum expressions. A quantum result valid for the rotating wave approximation limit is given.
This paper is a logical continuation of our recent work.

1. Introduction

The dielectric properties of polar fluids is a field of most research activities in physics,
chemistry and technology. In particular, polymer engineers find this domain very fruitful.
Through the qualitative and quantitative development of spectral analysis of atmospheric
gas composition, the problem of atmospheric pollution and global warming can be tackled.
More importantly, the absorption and dispersion of radio waves can be checked, which thus
gives the applications in communication.

Two very important dielectric properties, the electrical susceptibilityχ(t) and the Kerr
function8(t) [1–5], are the cornerstones of all the above developments.

The response of a dielectric system to the application of an electric fieldE is the growth
of a polarizationP . On considering only linear response theory,E andP are in a linear
relationship:

P (t) =
∫ t

−∞
χ(t − t ′)E(t ′) dt. (1)

The frequency or the spectral functionχ(ω) called the complex susceptibility is given by
[5]:

P(ω) = χ(ω)E(ω) =
(
P(o)− iω

∫ ∞
0

e−iωtPα(t) dt

)
(2)
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where

Pα(t) = 〈µ cosβ(t)〉. (3)

β(t) is the angle at timet between the direction of the applied field and the dipole moment
vector. χ(ω) is a complex function

χ(ω) = χ ′(ω)− iχ ′′(ω) (4)

with χ ′(ω) responsible for the dispersive properties of most media whileχ ′′(ω), an always
positive quantity, is the absorption or the loss factor.

The refractive index tensorn undergoes a modification when subjected to a polarizing
electric field. This modification depends on the direction of the polarizing field relative to
the electric field of the analysing signal. For parallel analysis, the refractive index tensor is
n‖ while for perpendicular analysis it isn⊥. The Kerr effect is a measure of the difference

between these two tensors

1n = n‖ − n⊥. (5)

Molecular dynamic studies reveal thatn is related to the ensemble average of the second-
order associated Legendre polynomials in the dipole moment orientation unit vectoru,
1
2(3uu− 1). We define the Kerr function as [1–3]

8(t) = 1
2〈(3uzuz − 1)〉 (6)

where the angle brackets〈. . .〉 denote ensemble averaging,uz is thez component ofu and
we assume that the polarizing electric field is parallel to thez-axis of the laboratory frame.
The reduced spectral function1nr(ω) is obtained from8(t) by using

1nr(ω) = 1

8(o)

(
8(o)− iω

∫ ∞
0
8(t)e−iωt dt

)
. (7)

We consider the rotational motion of a system of rotators embedded in a sea of non-
interacting bath oscillators. This problem has been tackled in recent years by many authors
[1–3], with all approaches based on classical methods using either the Smoluchowski
equation or the generalized Liouville equation also called the Fokker–Planck–Kramer (FPK)
equation. In the latter, the molecular orientation distribution function is expanded as a linear
combination of the associated Legendre polynomials in cosβ [1–3] (whereβ is the angle
between the principal axis of the rotator and the direction of the applied electric field).
The coefficients of the respective polynomials are related to the most relevant dielectric
properties such as the electrical susceptibility and birefringence or the Kerr effect.

In this paper, we consider the simple case of a quasi-free rotator undergoing intermittent
instantaneous collisions with a bath of bosonic oscillators. These collisions lead to heat
transfer from the host bath to the rotators. In our model the following assumptions are
made.

(1) The bath oscillator–rotator system is homogeneous.
(2) The rotator has a needle shape [6], so that the moment of inertia about its longitudinal

axis is zero while that measured about a transverse axis passing through the centre is non-
zero. The bath effect on the rotator is conceived as a quantum noise described by a collision
operator in the considered dynamical equation.

(3) The rotator–rotator interaction is neglected, as we consider an infinitely dilute
solution of rotators in the bath. Thus one rotator can be studied independently of the
others.

This paper is organized as follows. In section 2, the master equation governing the
evolution of the rotator probability density operator is given; we analyse the stability of the
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master equation and energy-balance equations are given. In section 3, master equations are
derived for well defined matrix elements; these are solved for different physical conditions
leading to the classical Brownian limit and the rotating wave approximation (RWA) limit,
respectively. In section 4, we analyse the entropy function evolution from one equilibrium
state (in the presence of the electric field) to another (with total field effect vanished or
absolute thermal equilibrium). Highlights of the derivation of more relevant equations are
presented in the appendices.

2. The theoretical model

Let us consider a symmetric rigid linear rotator, fixed at its centre but free to rotate about the
latter [5]. The rotator is in a bath of non-polar mutually non-interacting harmonic oscillators
that interact harmonically with one or the other end of the rotator. The centres of mass
of the bath oscillators are spatially fixed. So, only the rotational degrees of freedom of
the rotator are considered. The rotator possesses a permanent dipole moment susceptible
of interacting with an applied electric field. In the quantum treatment, the Hilbert space
associated with this model is the tensorial product of the Hilbert space associated with the
rotator systemHS and of the bath systemHB [5]:

H = HS ⊗HB. (8)

The system Hamiltonian is the one used in [5].
The electric-field term resulting from the interaction between the permanent dipole(µ)

and induced dipole moments and the applied electric field, is found to be:

ĤE(t) =
−µE cosβ̂ − α‖ − α⊥

2
E2 cos2 β̂ − α⊥

2
E2Î if t < 0

0 if t > 0
(9)

whereα‖ andα⊥ are, respectively, the rotator polarizability tensor components parallel and
perpendicular to the molecular principal axis. We have assumed that the electric field is
applied along thez-axis of the laboratory frame. The evolution of the rotator probability
density operator is governed by the master equation [5]:

∂ρ̂S(t)

∂t
+ i

h̄
[ĤS, ρ̂S(t)] = −ζ

I

∞∑
l=1

l{A∗l û · û−l ρ̂S(t)− Alû · ρ̂S(t)û+l
+Blû · û+l ρ̂S(t)− B∗l û · ρ̂S(t)û−l − A∗l û−l · ρ̂S(t)û+ Alρ̂S(t)û+l · û
+B∗l ρ̂S(t)û−l û− Blû+l ρ̂S(t) · û} (10)

where

Al = ω2
D

ω2
D + ω2

L

(
1+N(ωl)+ i

(
κ(xl, xD)− ωl

2ωD

))
(11)

Bl = ω2
D

ω2
D + ω2

l

(
N(ωl)+ i

(
κ(xl, xD)+ ωl

2ωD

))
(12)

with

κ(xl, xD) = −
(

1

xD
+ 2

∞∑
n=1

x2
l − 2πxDn

(xl + xD)(x2
l + 4π2n2)

)
(13)

and

xj = βh̄ωj β = 1

kBT
n ∈ Z+. (14)



6330 J T Titantah and M N Hounkonnou

We have used the spherical harmonic expansion of the unit vectorû [5]

û(t) =
∞∑
l=1

(û+l + û−l (t)). (15)

A∗l andB∗l are the complex conjugates ofAl andBl , respectively. kB is the Boltzmann
constant,T the absolute temperature,ζ the friction coefficient andN(ωl) the occupation
number of the rotator quantum levell. The term at the right-hand side of equation (10) is
the collision termK̂ρ̂(t). ωl appearing in the last equation is the angular frequency of the
rotator quantum statel. In the absence of the field, this corresponds to the energy:

El = h̄2

2I
l(l + 1). (16)

Equation (10) can now be written as:

∂ρ̂S(t)

∂t
+ i

h̄
[ĤS, ρ̂S(t)] = K̂ρ̂S(t). (17)

The collision operator imposes that the weak coupling limit must be characterized by the
inequalities [8] (see also [5]):

ζ

I
� kBT

h̄
(18)

and
ζ

I
� ωD. (19)

It has been shown in [5, 8] that in the case where the first inequality is verified, the coupling
effect on the density matrix can be neglected. The classical Brownian and the RWA limits
are determined by the value of the mean thermal agitation frequencyωmean= (kBT /I)0.5.
In the former,ωmean is of the same order of magnitude as the characteristic frequency
ζ/I . In this case, the rotator energy is of the same order as the thermal energy, that is,
h̄2l(l + 1)/2I ∼ kBT . Here, we assume thatωD →∞. The latter limit, corresponding to
the RWA limit [7], concerns the weak coupling assumption,ζ/I � ωmean. In this case we
use a theorem by Davies [3, 9, 10] on weak coupling as described in [5].

For equation (17), we consider the field-removal initial condition

ρ̂S(t = 0) = ρ̂eq
S (E 6= 0) = trB [e−β(ĤS+ĤB+ĤSB+ĤE)]

tr[e−β(ĤS+ĤB+ĤSB+ĤE)]
(20)

which corresponds to the canonical equilibrium density operator of the bath–rotator system
in the presence of the electric field. On performing a perturbative expansion inβĤE , we
obtain (see appendix A)

ρ̂S(t = 0) = e−βĤS

trS e−βĤS
− β

trS e−βĤS

∫ 1

0
dα e−αβĤS ĤEe−(1−α)βĤS + β2

trS e−βĤS

∫ 1

0
dα α

×
∫ 1

0
dα′ e−(1−α

′)αβĤS ĤEe−α
′αβĤS ĤEe−(1−α)βĤS + · · · . (21)

The symbols trS , trB and tr denote, respectively, trace norms over the rotator, bath Hilbert
spaces and the coupled rotator–bath Hilbert space.

The stability of the master equation (17) can be analysed by assuming its solutions to
be of the form

ρ̂S(t) = ρ̂eq
S ρ̂(t) (22)
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and defining a Liapounov function as trS(ρ̂
eq
S ρ̂(t)

2
). On substituting this solution in the

master equation and multiplying both sides of the resulting equation byρ̂(t) and taking
trace we obtain:

d

dt

∞∑
l=0

l∑
m=−l

ρ
eqm
l,l

|ρmll (t)|2
2

= −2B Re
∞∑
l=0

l∑
m=−l

(All
2+ Bl+1(l + 1)2)ρeqm

l,l |ρml,l(t)|2
1

2l + 1

+2B Re
∞∑
l=0

l∑
m=−l

Al
l2

2l + 1
ρ

eqm
l,l |ρml−1,l−1(t)|2

+2B Re
∞∑
l=0

l∑
m=−l

Bl+1
(l + 1)2

2l + 1
ρ

eqm
l,l |ρml+1,l+1(t)|2. (23)

We have assumed that the system is near equilibrium so that all off-diagonal terms in the
probability density matrix are neglected. If̂ρ(t) is independent of the rotator variables,
ρml,l(t) will be independent ofl andm, then the right-hand side of equation (23) equals zero,
the expression of the probability density operator is, thus, identically equal to that of the
equilibrium distribution with matrix elementsρeqm

l,l . This shows that the positive function to
the left of equation (23) decreases exponentially to its equilibrium value when the field is
switched off. This ensures the stability of the solutions of equation (17).

In the absence of the field, the energy balance equation is

d

dt
U = d

dt
Q (24)

where

U(t) =
∞∑
l=0

l∑
m=−l
〈l, m|ĤSρ̂S(t)|l, m〉. (25)

The master equation then gives

d

dt
Q = 2B[kBT − U(t)]. (26)

In the presence of the field

d

dt
U = d

dt
Q+ d

dt
W (27)

where

d

dt
W = d

dt

∞∑
l=0

l∑
m=−l
〈l, m|ĤEρ̂S(t)|l, m〉. (28)

Note that
∞∑
l=0

l∑
m=−l
〈l, m|ĤEρ̂S(t)|l, m〉 = −Eχ(t)− 1α

3
E28(t)− α‖ + 2α⊥

6
E2 (29)

whereχ(t) and8(t) are the electric susceptibility and the Kerr effect functions, respectively.
In the case of a DC field, the energy balance becomes

d

dt
Q = 2B[kBT − U(t)] − E d

dt
χ(t)− 1α

3
E2 d

dt
8(t). (30)

These results are identical to those previously obtained [8] via the FPK equation.Q is the
heat transferred to the rotator from the host bath and the work done by the electric field. In
the case where the electric field is applied in the far past and removed att = 0, χ(t) and
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8(t) are exponential decreasing functions of time, decreasing initially rapidly and tending
to zero values for large times. Hence, the rate of heat transfer is initially high but reduces to
the bath term at the equilibrium state. In the following section we use the established master
equation to calculate the Kerr function. Our first paper [5] was devoted to the electrical
susceptibility study.

3. The Kerr effect function

3.1. The master equations for the matrix elements

The Kerr effect or the electrical birefringence expresses the modification in the refractive
index tensor of a medium as a result of the passage of an electric field through it. For rigid,
linear molecules, the refractive index tensorn is written as

n = n1+ A
2
〈(3ûû− 1̂)〉 (31)

whereû is the molecule orientation unit vector, which here, is the dipole moment orientation
unit vector andn is the isotropic refractive index (in the absence of any external stress).
A is a constant expressing the intrinsic birefringent properties of the medium. The Kerr
function8(t) is related to the component〈(3ûzûz − 1̂)〉 as

8(t) = 1
2〈(3ûzûz − 1̂)〉. (32)

On using the spherical harmonic representation of the unit vectorû and the probability
density operator̂ρS(t) while defining matrix elements

ϕl,l(t) =
l∑

m=−l
(l(l + 1)− 3m2)〈l, m|ρ̂S(t)|l, m〉 (33)

and

ϕl,l+2(t) =
l∑

m=−l

√
(l + 1−m)(l + 1+m)(l + 2−m)(l + 2+m)

(2l + 1)(2l + 3)2(2l + 5)
〈l, m|ρ̂S(t)|l + 2, m〉

(34)

we obtain

8(t) =
∞∑
l=1

{
1

(2l − 1)(2l + 3)
ϕl,l(t)+ 3

2
(ϕl,l+2(t)+ ϕ∗l,l+2(t))

}
. (35)

Let us derive the master equations verified by the matrix elements. To get the
equation for ϕl,l(t), we multiply through the master equation (17) from the left by∑l

m=−l(l(l+1)−3m2)|l, m〉〈l, m| and take trace. On using some properties (see appendix C)
we obtain:
∂

∂t
ϕl,l(t) = −2B Re

[
(All

2+ Bl+1(l + 1)2)
ϕl,l(t)

2l + 1

−Al+1(l + 1)
(2l − 1)l

(2l + 1)(2l + 3)
ϕl+1,l+1(t)

−Bll (l + 1)(2l + 3)

(2l + 1)(2l − 1)
ϕl−1,l−1(t)(1− δl0)

−3(Bll + Al+1(l + 1))ϕl−1,l+1(t)(1− δl0)
]
. (36)
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The initial condition (21), together with some algebra [12], leads to

ϕl,l(t = 0) = e−βEl∑∞
l′=0(2l

′ + 1)e−βEl′

{
l(l + 1)(2l + 3)

15

[
1

2
β1αE2

+ β2µ2E2

β(El − El−1)

{
1

β(El − El−1)
(eβ(El−El−1) − 1)− 1

}]
+ 1

15
l(l + 1)(2l − 1)

[
1

2
β1αE2

+ β2µ2E2

β(El+1− El)
{

1− 1

β(El+1− El) (1− e−β(El+1−El))
}]}

. (37)

To get the equation verified byϕl,l+2(t), we multiply through equation (17) from the right
by û+l+2zû

+
l+1z and take trace. The use of similar properties as in equation (36) yields

∂

∂t
ϕl,l+2(t)− ih̄

I
(2l + 3)ϕl,l+2(t) = −B

[{
(A∗l l

2+ Bl+1(l + 1)2)
1

2l + 1

+(Al+2(l + 2)2+ B∗l+3(l + 3)2)
1

2l + 5

}
ϕl,l+2(t)

− l + 2

2l + 3
(B∗l l + Bl+2(l + 2))ϕl−1,l+1(t)(1− δlo)

− l + 1

2l + 3
(A∗l+1(l + 1)+ Al+3(l + 3))ϕl+1,l+3(t)

−2
(Al+1(l + 1)+ B∗l+2(l + 2))

(2l + 1)(2l + 3)2(2l + 5)
ϕl+1,l+1(t)

]
. (38)

The initial condition onϕl,l+2(t) is

ϕl,l+2(t = 0) = e−βEl∑∞
l′=0(2l

′ + 1)e−βEl′
2(l + 1)(l + 2)

15(2l + 3)

×
[

1

2β(El+2− El) (1− eβ(El+2−El))1αβE2

+ β2µ2E2

β(El+1− El)
{

1

β(El+2− El) (1− e−β(El+2−El))

− 1

β(El+2− El+1)
(e−β(El+1−El) − e−β(El+2−El))

}]
. (39)

In equations (36) and (38)B = ζ/I . The exact expression for8(t) can be obtained if
equations (36) and (38) are exactly solved using initial conditions (37) and (39). This
quantum approach generalizes all results obtained using classical and semiclassical methods
[1–3]. Let us now consider the case of the classical Brownian limit.

3.2. The classical Brownian limit

The classical Brownian limit is characterized by the inequalities [5]:

a = h̄2

IkBT
� 1 and

ωmean

ωD
� 1 (40)

which express the idea that the rotators perform slow random rotational motions compared
with thermal motions and the fact that the thermal agitation frequencies will hardly ever
attain the upper limit which corresponds to the Debye limit. Also, the rotator energy
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spectrum is regularly continuous. Though the quantum numberl can assume large values,
the quantityal = (h̄2/IkBT )l is considered to be always very small compared to 1. We
perform changes of functions

ϕl,l(t) = a

2
l(l + 1)(2l + 1) exp

[
− h̄2

2IkBT
l(l + 1)

]
ψl(t) (41)

ϕl,l+2(t) = a

2

(l + 1)(l + 2)

2l + 3
exp

[
− h̄2

2IkBT
l(l + 1)

]
(ϕl + i(2l + 3)χl(t)) (42)

while using the continuum hypothesis:
a

2
l(l + 1)→ x (43)

and lettingψ(x, t), ϕ(x, t) andχ(x, t) be the continuum analogues of the discrete functions
ψl(t), ϕl(t) and χl(t), equations (36) and (38) reduce to second-order coupled partial
differential equations.

On using the passage from the discrete to the continuous sum
∞∑
l=1

Ul(t)→ 1√
2a

∫ ∞
0

dx√
x
U(x, t) (44)

we obtain the expression for the Kerr function

8(t) = 1
4

∫ ∞
0

dx e−x(ψ(x, t)+ 3ϕ(x, t)). (45)

Let

F(x, t) = ψ(x, t)+ 3ϕ(x, t) (46)

then for dimensionless timeτ = Bt, the differential equations become:

∂

∂τ
F (x, τ )+ 3αxχ(x, τ ) = 2[xFxx(x, τ )+ (1− x)Fx(x, τ )] (47)

∂

∂τ
χ(x, τ )− λ

3
(F (x, τ )− ψ(x, τ)) = 2[xχxx(x, τ )+ (2− x)χx(x, τ )− 1

2χ(x, τ )] (48)

∂

∂τ
ψ(x, τ ) = 2

[
xψxx(x, τ )+ (1− x)ψx(x, τ )− 1

x
ψ(x, τ )+ 1

4x
F(x, t)

]
(49)

F(x, 0) = 4E2

15

(
1α

kBT
+ µ2

(kBT )2

)
= 48static (50)

α = 8h̄

IaB
and λ = h̄

IB
. (51)

In matrix form

D
τ,x
M(τ, x) = 0 (52)

M(τ, x) =
(
F(τ, x)

χ(τ, x)

ψ(τ, x)

)
(53)

D
τ,x
=
 ∂

∂τ
− 2[x ∂2

∂x2 + (1− x) ∂∂x ] 3αx

− λ
3

∂
∂τ
− 2[x ∂2

∂x2 + (2− x) ∂∂x − 1
2]

− 1
2x 0

0
λ
3

∂
∂τ
− 2[x ∂2

∂x2 + (1− x) ∂∂x ] + 2
x

 . (54)
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M(x, 0) = 8static

( 4
0
1

)
. (55)

The spatial parts of the diagonal terms in the differential operatorD
τ,x

are related
to the differential operator whose eigenfunctions are nothing but the generalized Laguerre
polynomialsLmj (x) that verify the following properties [2, 13]:(

x
d2

dx2
+ (m+ 1− x) d

dx
+ j

)
Lmj (x) = 0 (56)

xLm+1
j (x) = (m+ j + 1)Lmj (x)− (j + 1)Lmj+1(x) (57)

Lmj (x) = Lm+1
j (x)− Lm+1

j−1 (x) (58)(
x

d

dx
− x +m

)
Lmj (x) = (j + 1)Lm−1

j+1 (x) (59)(
d

dx
− 1

)
Lmj (x) = −Lm+1

j (x). (60)

The orthogonality property of theLmj (x) is written as∫ ∞
0

dx e−xxmLmj (x)L
m
j ′ (x) = δjj ′ . (61)

We, thus, look for solutions to the system (52) in the form

M(x, τ) =
∞∑
j=0

 fj (τ )L0
j (x)

cj (τ )L
1
j (x)

dj (τ )L
0
j (x)

 . (62)

On using this in the system (47)–(49) while making use of the properties (56)–(60), we
obtain the differential difference equations:(

d

dτ
+ 2j

)
fj (τ )+ 3α((j + 1)cj (τ )− jcj−1(τ )) = 0 (63)(

d

dτ
+ 2j + 1

)
cj (τ )− λ

3
(fj (τ )− fj+1(τ ))+ λ

3
(dj (τ )− dj+1(τ )) = 0 (64)

2(2j + 1)

(
d

dτ
+ 2j

)
dj (τ )+ 4dj (τ )− 2j

(
d

dτ
+ 2j − 2

)
dj−1(τ )

−2(j + 1)

(
d

dτ
+ 2j + 2

)
dj+1(τ )− fj (τ ) = 0. (65)

The Kerr function becomes,

8(τ) = 1
4f0(τ ). (66)

On taking the Laplace transforms of (63)–(65) and searching forf0(s
′) (wheres = s ′B is

the Laplace variable) as a continued fraction [14], we obtain the Kerr function

8̃(s ′) =
E2

15B

(
1α

kBT
+ µ2

(kBT )
2

)
s′ + 6γ

s′ + 1+ 10γ

s′ + 2+ 16γ

s′ + 3− 4γ

(s′ + 2)(s′ + 4)
+ 16γ

s′ + 4+ 24γ

s′ + 5− 4γ

(s′ + 4)(s′ + 6)
+ 24γ

s′ + 6+ · · ·

(67)



6336 J T Titantah and M N Hounkonnou

whereγ = αλ/8= (IkBT /ζ 2).
The continued fraction (67), as the exact expression of the Kerr relaxation function in

the classical limit obtained from the generalized quantum equations (36), (38), is analogous
to the result previously obtained by Hounkonnouet al [2], and generalizes all approximate
solutions published in the literature. All the higher-order solutions of the Kerr effect
relaxation obtained, for example, by Kalmykovet al [1] are simply some approximations
of the successive convergents, up to the third order, of (67). These are well characterized
in [2].

Let us define

1nr(s
′) = B8̃(s ′)

/[
E2

15

(
1α

kBT
+ µ2

(kBT )2

)]
. (68)

The characteristic timesτ (i), corresponding to theith convergent of (67), can be calculated
using:

τ (i) = 1

B
1n(i)r (0). (69)

Note that on replacings ′ by iω′ (ω′ = ω/B) in the zeroth convergent to get the frequency
picture, we obtain

1n(0)r (ω) =
BτD2

1+ iωτD2
. (70)

This is the rotational diffusion limit [1, 2, 15], with relaxation time

τ (0) = τD2 ≡ ζ

6kBT
. (71)

The first convergent,

1n(1)r (ω) = (iω + B)τD2

/[
1+ iωτD2−

(
Iω2

6kBT

)]
(72)

gives the same characteristic time as that obtained for1n(0)r (ω). The second convergent
gives

τ (2) = (1+ 5γ )τD2. (73)

This result coincides precisely with those obtained by Kalmykovet al [1], Hounkonnouet
al [2] and Burshtein and Temkin [16]. The third convergent gives

τ (3) = (1+ 5γ − 40
3 γ

2)τD2. (74)

For smallγ , that is equivalent to small inertia and/or large friction,τ (3)→ τ (2).

A more relevant form for the quantity1nr(ω) is its representation in the complex space
1nr(ω) = 1n′r (ω) − i1n′′r (ω). The real part is related to the dispersion factor while the
imaginary part accounts for absorption.

Figure 1 shows the frequency dependence of the real parts of the first three convergents
of 1nr(ω). Note that all curves tend assymptotically to zero. Figure 2 shows the evolution
of the loss factor1n′′r (ω).
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Figure 1. Normalized dispersion coefficient1n′r (ω) plots against the reduced frequencyω/B
for the Debye diffusion limit(0), the first (1) and the second(2) convergents in the classical
Brownian limit for γ = 0.05.

Figure 2. Normalized loss factor1n′′r (ω) plots against the reduced frequencyω/B for the
Debye diffusion limit(0), the first(1) and the second(2) convergents in the classical Brownian
limit for γ = 0.05.

3.3. The rotating wave approximation

With the replacement of̂K by (K̂\) for weak coupling [5], we can neglect all off-diagonal
terms in equations (36) and (38). We assume thatωD is very large compared to bothωl and
ωmean though the latter may attain relatively high values. All terms likeϕl±1,l±1, ϕl±1,l+2±1

and all coupling terms are ignored in the master equations which now read:(
∂

∂t
+ 0l

)
ϕl,l(t) = 0 (75)

and [
∂

∂t
− i

(
h̄

I
(2l + 3)+1ωl+2

)
+ 0l+2

]
ϕl,l+2(t) = 0 (76)
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where the positive half widths0 and the frequency shifts1ω for ωl/ωD → 0 are:

0l = 2B[l2(1+N(ωl))+ (l + 1)2N(ωl+1)]
1

2l + 1
(77)

0l+2 = B
[
l2(1+N(ωl)) 1

2l + 1
+ (l + 1)2N(ωl+1)

1

2l + 1

+(l + 2)2(1+N(ωl+2))
1

2l + 5
+ (l + 3)2N(ωl+3)

1

2l + 5

]
(78)

and

1ωl+2 = −2Ba2(2l + 3)
∞∑
n=1

(2πn)5

[(2πn)2+ a2l2][(2πn)2+ a2(l + 1)2]

× 1

[(2πn)2+ a2(l + 2)2][(2πn)2+ a2(l + 3)2]

{
1+ a2

(2πn)2
(l2+ 3l + 3)

}
.

(79)

It is important to remark here that equation (75) describes the time relaxation of the diagonal
elements of the quantum canonical probability density matrix element. This equation shows
that under weak coupling the system remains close to the electric-field imposed equilibrium
for a relatively long time since each of its quantum states has a relaxation time which is
inversely proportional to the friction coefficient (τrel ∝ 1/0l). From the expression of0l it is
obvious that high-energy states relax faster than low-energy ones. Observed relaxation will
therefore be accounted for by low-energy states. The non diagonal matrix elements relax
in a similar manner but are accompanied by oscillations with frequencies that correspond
to the l→ l + 2 rotational transitions.

Equations (75) and (76) have solutions

ϕl,l(t) = E2

15

(
1α

kBT
+ µ2

(kBT )2

)
l(l + 1)(2l + 1) exp

[
− h̄2

2IkBT
l(l + 1)

]
× 1∑∞

l′=0(2l
′ + 1) exp[ −h̄

2

2IkBT
l′(l′ + 1)]

exp(−0lt) (80)

ϕl,l+2(t) = E2

15

(
1α

kBT
+ µ2

(kBT )2

)
(l + 1)(l + 2)

(2l + 3)
∑∞

l′=0(2l
′ + 1) exp[− h̄2

2IkBT
l′(l′ + 1)]

× exp

[
− h̄2

2IkBT
l(l + 1)

]
exp

[
−0l+2t + i

(
h̄

I
(2l + 3)+1ωl+2

)
t

]
. (81)

On substituting these into equation (35) and taking the one-sided Fourier transform,

8̃(ω) =
∫ ∞

0
dt e−iωt8(t) (82)

we get the frequency picture of the Kerr function

8̃(ω) = 8̃′(ω)− i8̃′′(ω) (83)

where

8̃′(ω′) =
E2

15B (
1α
kBT
+ µ2

(kBT )2
)∑∞

l′=0(2l
′ + 1) exp[− h̄2

IkBT
l′(l′ + 1)]

∞∑
l=0

(l + 1) exp[− h̄2

IkBT
l(l + 1)]

2l + 3

×
{
l(2l + 1)

2l − 1

Gl

ω′2+G2
l

+ 3

2
(l + 2)Ml

(
1

M2
l + (ω′ − h̄

IB
(2l + 3)−Wl)2
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+ 1

M2
l + (ω′ + h̄

IB
(2l + 3)+Wl)2

)}
(84)

and

8̃′′(ω′) =
E2

15B (
1α
kBT
+ µ2

(kBT )2
)∑∞

l′=0(2l
′ + 1) exp[− h̄2

IkBT
l′(l′ + 1)]

∞∑
l=0

(l + 1) exp[− h̄2

IkBT
l(l + 1)]

2l + 3

×
{
l(2l + 1)

2l − 1

ω′

ω′2+G2
l

+ 3

2
(l + 2)

(
ω′ − h̄

IB
(2l + 3)−Wl

M2
l + (ω′ − h̄

IB
(2l + 3)−Wl)2

+ ω′ + h̄
IB
(2l + 3)+Wl

M2
l + (ω′ + h̄

IB
(2l + 3)+Wl)2

)}
(85)

with ω′ = ω/B, Gl = 0l/B, Ml = 0l+2/B andWl = 1ωl+2/B.
The spectral function1nr(ω) is deduced from equation (7) as:

1nr(ω) = 1n′r (ω′)− i1n′′r (ω
′) (86)

where

1n′r (ω
′) = h̄2

2IkBT

∞∑
l=0

(l + 1) exp[− h̄2

IkBT
l(l + 1)]

2l + 3

{
l(2l + 1)

2l − 1

ω′2

ω′2+G2
l

+3

2
(l + 2)

(
2+ ω′(ω′ − h̄

IB
(2l + 3)−Wl)

M2
l + (ω′ − h̄

IB
(2l + 3)−Wl)2

+ ω′(ω′ + h̄
IB
(2l + 3)+Wl)

M2
l + (ω′ + h̄

IB
(2l + 3)+Wl)2

)}
(87)

and

1n′′r (ω
′) = h̄2

2IkBT

∞∑
l=0

(l + 1) exp[− h̄2

IkBT
l(l + 1)]

2l + 3

{
l(2l + 1)

2l − 1

Glω
′

ω′2+G2
l

+3

2
(l + 2)

(
Mlω

′

M2
l + (ω′ − h̄

IB
(2l + 3)−Wl)2

+ Mlω
′

M2
l + (ω′ + h̄

IB
(2l + 3)+Wl)2

)}
. (88)

We have described a model Hamiltonian of a system of polar linear rigid rotators in
a bath of non polar harmonic oscillators. Quantal equations are given for well defined
matrix elements that have been used to calculate the Kerr function. We have recovered the
classical Brownian limit developed by many workers [1–3]. A quantal expression for the
Kerr function (equation (83)) which is valid for weak coupling (Van Hove limit) [17, 18],
has been given. It is the Van Vleck Weisskopf line form for the Kerr function obtained via
a mathematical theorem by Davies [9] for the master equation in the interaction picture.
In this limit, we ignore all ‘off-diagonal’ terms in the equations governing the evolution of
the matrix elements. Neilsen and Gordon [19] concluded from their impact calculations on
rotational line broadening of HCl by argon, that off-diagonal elements of theσ -matrix have
little influence on the spectral shape for low densities (densities lower than 1500 amagats).

The exact Kerr effect corresponding to the classical Brownian limit is given by the
continued fraction in equation (67). The convergence of this fraction is governed by the
parameterγ = (IkBT /ζ

2). This convergence is assured for smallγ , that is, for small
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inertia and/or large friction. The different convergents of equation (67) can, therefore,
only be applicable to light rotators in dense-bath media. This means that collisions
between the rotators and the bath oscillators are frequent and we observe continuous
absorption/dispersion spectra as seen in figures 1 and 2. The relaxation time, being the
time over which an initial polarization decays in a zero field, must increase with increasing
collision frequencies since collisions hinder the drift motion of dipoles which is the agency
causing changes in polarization. The characteristic frequencyB = ζ/I , is an increasing
function of density and pressure [20] of the host bath. It depends also on the rotator.
For rotators with characteristics comparable with those of the bath, collisions are likely to
involve large exchanges of energies, for example, of the order ofkBT .

For large inertia and/or small friction, equation (67) becomes unsuitable for the analysis
of the Kerr effect relaxation. For weak coupling (smallζ ), we expect that collisions
be less frequent and that the system becomes strongly uncorrelated. This should lead
to absorption/dispersion spectra characterized by well defined line shapes.

Figure 3. Normalized dispersion lineform1n′r (ω) against the Neperian logarithm of the reduced
frequency ln(ω/B) in the van Hove limit forB/ωmean= 0.001, andh̄2/(IkBT ) = 0.05.

Figure 4. Normalized absorption (loss factor) lineform1n′′r (ω) against the Neperian logarithm
of the reduced frequency ln(ω/B) in the van Hove limit forB/ωmean= 0.001, andh̄2/(IkBT ) =
0.05.
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Figures 3 and 4 show the frequency dependence of the real and the imaginary parts
of the quantity1nr(ω), respectively. These curves are obtained for the particular values
of the parametersa = (h̄2/IkBT ) = 0.05 andB/(kBT /I)0.5 = 0.001. All these curves
qualitatively well reproduce the absorption and dispersion behaviours of fluids exhibiting
quantum effects as depicted by experiments [21]. The latter portray absorption/dispersion
resonance lines at well defined frequencies. For large frequencies(ν > 1014 Hz), as
seen on the graphs, all resonance phenomena disappear giving rise to zero absorption,
whereas dispersion tends asymptotically to a constant non-zero value. For low frequencies
(ν < 1011 Hz), resonances are absent but start appearing for frequencies above 1011 Hz
and become populous in the range 1011 Hz< ν < 1014 Hz. We can note that the classical
limit gives only one of these absorption lines and that the resonances observed are largely
due to low-energy rotators (l < 10). It is also important to note that the particular values
affixed to the parameters of the model are those of HCl at temperatures between 150 K and
300 K. Frenkel [21] experimented that for HCl (0.06 amagat) at about 180 K in Xe (1.05
amagat), absorption lines appear in the range 10 cm−1 6 1/λ 6 300 cm−1. Our approach
gives practically the same range with identical line positions.

These results confirm all deductions made using a similar approach on the electrical
susceptibility in [5]. Our results and those of the latter paper are, thus, in good agreement
with experimental results [19, 21]. The coherency between the theory and the experiments
acts as a stimulant to further investigations of quantum effects on dielectric properties of
polar fluids in non-polar thermalized media.

4. Entropy function calculation

We now proceed to analyse the evolution of the entropy from when the system is in
equilibrium in the presence of the field until the thermal equilibrium in the absence of
the field is attained. In this analysis, we consider that the external electric field is so weak
that the system is not far from the thermal equilibrium state. We, therefore, supposeρ̂S(t)

to be of the form [22]:

ρ̂S(t) = ρ̂eq
S∞(Î + ĝ(t)) (89)

whereρ̂eq
S∞ is the thermal equilibrium probability density operator in zero field conditions.

The Boltzmann entropy formula,

S(t) = −kB〈ρ̂S(t) ln ρ̂S(t)〉 (90)

yields, to first order inĝ(t),

S(t) = S∞ + kB
∑
l

(βEl − 1+ lnZ∞)Gl,l(t) (91)

where

S∞ = −kB
∑
l

l∑
m=−l
〈l, m|ρ̂eq

S∞ ln ρ̂eq
S∞|l, m〉 = kB

(
1+ ln

(
2IkBT

h̄2

))
(92)

Gl,l(t) =
l∑

m=−l
〈l, m|ρ̂eq

S∞ĝ(t)|l, m〉 =
l∑

m=−l
ρ

eq
l,l g

m
l,l(t) (93)

and the partition function,Z∞ is

Z∞ =
∑
l

l∑
m=−l
〈l, m| exp−βĤS |l, m〉 = 2IkBT

h̄2 . (94)
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The density operator̂ρS(t) must obey the master equation (17), in particularρ̂
eq
S∞ verifies

it since it is an asymptotic solution.̂ρeq
S∞ĝ(t) is governed by the equation

ρ̂
eq
S∞

∂

∂t
ĝ(t) = K̂(ρ̂eq

S∞ĝ(t)). (95)

On multiplying through this by
∑l

m=−l |l, m〉〈l, m| and taking trace, we obtain

∂

∂t
Gl,l(t) = −2B Re

[
(All

2+ Bl+1(l + 1)2)
Gl,l(t)

2l + 1
− Al+1

(l + 1)2

2l + 3
Gl+1,l+1(t)

−Bl l2

2l − 1
Gl−1,l−1(t)(1− δl0)

]
. (96)

It is easily seen from equation (21) that the initial condition onGl,l(t) is

Gl,l(t = 0) = h̄2

36IkBT

(
µE

kBT

)2 e−βEl

Z∞
(2l + 1)(βEl − 1). (97)

The entropy, therefore, relaxes from the initial equilibrium value

S(0) = kB
[

1+ ln

(
2IkBT

h̄2

)
+ h̄2

36IkBT

(
µE

kBT

)2
]
. (98)

We perform the change of function

Gl,l(t) = h̄2

36IkBT

(
µE

kBT

)2 e−βEl

Z∞
(2l + 1)Yl(t). (99)

whereYl(t) has the initial conditionYl(0) = βEl − 1. Then, the continuum approximations
lead to (whereY (x, τ ) is the continuum analogue ofYl(τ )),

∂

∂τ
Y (x, τ ) = 2[xYxx(x, τ )+ (1− x)Yx(x, τ )+ 1

2Y (x, τ )]. (100)

Solutions are sought for as a linear combination of the Laguerre polynomials

Y (x, τ ) =
∞∑
j=0

yj (τ )Lj (x). (101)

The initial condition onGl(t) leads to

Y (x, τ ) = y1(τ )L1(x) (102)

with y1(t) = −e−Bt . We recover the expression for the entropy

S(t) = kB
[

1+ ln

(
2IkBT

h̄2

)
+ h̄2

36IkBT

(
µE

kBT

)2

e−Bt
]
. (103)

Note that the equilibrium state in the presence of the external field is more stable than
that in its absence. This could be predicted, since an external electric field will favour
statistical reorientation of dipole moments in its direction, thus increasing the order in the
whole system.
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Appendix A. The initial condition on ρ̂S(t)

ρ̂S(t = 0) = 1

trS trB e−β(Ĥ+ĤE)
trB e−β(Ĥ+ĤE). (104)

Let

Ŷ (β) = e−β(Ĥ+ĤE) (105)

then,
d

dβ
Ŷ (β) = −Ŷ (β)Ĥ − Ŷ (β)ĤE (106)

with solution

Ŷ (β) = Â(β)e−βĤ (107)

and

Â(β) = 1−
∫ 1

0
dα Ŷ (αβ)βĤEe−αβĤ . (108)

After performing similar expansion for e−βĤ = e−β(Ĥ0+ĤSB ), for small βĤSB and taking
trace over bath variables (Ĥ0 = ĤS + ĤB), we obtain, to second order inβĤE that:

ρ̂S(t = 0) = e−βĤS

trS e−βĤS
− β

trS e−βĤS

∫ 1

0
dα e−αβĤS ĤEe−(1−α)βĤS + β2

trS e−βĤS

∫ 1

0
dα α

×
∫ 1

0
dα′ e−(1−α

′)αβĤS ĤEe−α
′αβĤS ĤEe−(1−α)βĤS + · · · . (109)

Appendix B. The initial condition on ϕl,l(t)

ϕl,l(t = 0) =
l∑

l=−m
(l(l + 1)− 3m2)〈l, m|ρ̂S(t = 0)|l, m〉. (110)

On using the properties

(a) 〈l, m|e−αβĤS ĤEe−(1−α)βĤS |l, m〉 = e−βEl 〈l, m|βĤE|l, m〉 (111)

and

(b) 〈l, m|e−(1−α′)αβĤS βĤEe−αα
′βĤS βĤEe−(1−α)βĤS |l, m〉

= e−βEl
∞∑
l′=0

l′∑
m′=−l′

e−αα
′β(El′−El)|〈l, m|βĤE|l′, m′〉|2 (112)

we obtain

ϕl,l(t = 0) = 1∑∞
l′=0(2l

′ + 1)e−βEl′

l∑
m=−l

(l(l + 1)− 3m2)

×eβEl
[

1+ βα⊥
2
E2+ 〈l, m| cos2 β|l, m〉β1α

2
E2

+β2µ2E2
∞∑
l′′=0

l′′∑
m′′=−l′′

|〈l, m| cosβ|l′′, m′′〉|2
∫ 1

0
dα α

∫ 1

0
dα′ e−αα

′β(El′′−El)
]
.

(113)

This leads to the required expression when the expansion for cosβ and the expression for
ĤE (equation (9)) are used.
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Appendix C. Proof of the property

l∑
m=−l

(l(l + 1)− 3m2)〈l, m|û+l ρ̂S(t)û+l+1|l, m〉 = −3ϕl−1,l+1(t)(1− δl,0).

On using the spherical harmonic expansion forû, we get
l∑

m=−l
(l(l + 1)− 3m2)〈l, m|û+l ρ̂S(t)û+l+1|l, m〉

= 1
2

l∑
m=−l

l∑
m′=−l

l+1∑
m′′=−(l+1)

(l(l + 1)− 3m2)(−A(l,m′)B(l + 1, m′′)

×ρ̂m′+1
l−1,l+1(t)δm,m′δm′′+1,m − B(l,m′)A(l + 1, m′′)ρ̂m

′−1
l−1,l+1(t)δm,m′δm′′−1,m

+2C(l,m)C(l + 1, m)ρ̂ml−1,l+1(t)δm,m′δm′′,m)(1− δl,0)

= − 3
l−1∑

m=−(l−1)

[
(l − 1−m)(l − 1+m)(l + 1−m)(l + 1+m)

(2l − 1)(2l + 1)2(2l + 3)

] 1
2

×ρ̂ml−1,l+1(t)(1− δl,0)
= − 3ϕl−1,l+1(t)(1− δl,0) (114)

where

A(l,m) =
√
(l −m)(l −m− 1)

(2l − 1)(2l + 1)

B(l,m) =
√
(l +m)(l +m− 1)

(2l − 1)(2l + 1)

and

C(l,m) =
√
(l −m)(l +m)
(2l − 1)(2l + 1)

.
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